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SUMMARY

Streamline simulators have received increased attention in the petroleum industry because of their abil-
ity to e�ectively handle multimillion cell detailed geologic models and large simulation models. The
e�ciency of streamline simulation has relied primarily on their ability to take large time steps with
fewer pressure solutions within an IMPES formulation. However, unlike conventional �nite di�erence
simulators, no clear guidelines have been available for the choice of time step for pressure and veloc-
ity updates. This has remained largely an uncontrolled approximation, either managed by engineering
judgment, or by potentially time-consuming time step size sensitivity studies early in a project. This
is clearly related to the lack of theoretical understanding of numerical stability and convergence for
this solution method. Our results demonstrate a new ability to predict numerical stability for streamline
simulation. The analysis of numerical convergence is beyond our current scope. Clearly, both stability
and convergence are required for numerical solutions.
We will review the predictor–corrector streamline formulation recently introduced (SPE 79688, pre-

sented at the SPE Reservoir Simulation Symposium, Houston, TX, 3–5 February 2003). This formu-
lation includes the treatment of transverse �ux between streamlines, and for the �rst time provides a
rigorous foundation for discussions of numerical stability. We extend those discussions to include the
treatment of capillarity and of gravity. In all instances, we will recognize the limits of stability of the
calculations through the use of a CFL number, or in the instance of capillarity, a di�usion number.
Although the worked examples will all utilize explicit numerical techniques, in most instances, the use
of implicit techniques will be obvious.
We demonstrate the validity and utility of our approach using a series of numerical experiments

in homogeneous and heterogeneous 1
4 �ve-spot patterns at various mobility ratios. For the discussions

of capillarity and of gravity we also provide one-dimensional calculations to better understand our
options for their treatment using operator splitting. For these numerical experiments, we pay particular
attention to favourable mobility ratio displacements, as they are known to be challenging to streamline
simulation. Our results clearly demonstrate the impact of the transverse �ux correction on the accuracy
of the solution and on the appropriate choice of time step, across a range of mobility ratios. The
proposed approach eliminates much of the subjectivity associated with time step selection in streamline
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simulation, and provides a basis for automatic control of pressure time step within full �eld streamline
applications. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Streamline simulation has developed rapidly over the last ten years within the oil industry
[1–9]. Unlike the earlier streamtube calculations, which date back to the 1930s, streamline
simulators have dispensed with the explicit construction of volume elements (the tubes) and
replaced them with calculations along lines. Each line may be thought of as tracing out the
centre of a streamtube, with the velocity obtained from a numerical �nite di�erence calculation.
In contrast, within a streamtube, �uid velocity is obtained from the volumetric �ux per unit
area, where the area must be calculated explicitly as part of the streamtube construction.
With streamlines the geometry is implicit, making it simple to perform calculations in three
dimensions. To leading order, the streamline simulation appears as a sum of one-dimensional
simulations, and so calculations in one, two or three dimensions are essentially equivalent. It
is this ease of formulation which has transformed the class of problems which we can study
with streamline simulation. Where streamtube calculations emphasized two-dimensional sweep
and pattern �oods, streamline simulation has been applied to the full range of multiphase and
multi-component physical and chemical processes in three dimensions [10, 11].
For convection driven processes, streamline simulation has a tremendous advantage over

conventional �nite di�erence simulation. Transport along each line may be solved by appro-
priate one-dimensional numerical methods. For multiphase (black oil) simulation, these may
be either Lagrangian or Eulerian—both approaches have proven e�ective. The Lagrangian
discretization [12] has no obvious time step limitation. The Eulerian calculations along each
line are de-coupled, and so each may be performed optimally. Both explicit and implicit
Eulerian techniques have been used. Only Eulerian methods have been successfully applied
for multi-component systems because of the di�culty of formulating an appropriate Lagrangian
approach.
Irrespective of the numerical techniques used to solve transport along streamlines

(Lagrangian or Eulerian, explicit or implicit) streamline simulation is a large time step IMPES
calculation, with the ‘time step’ controlling the frequency of pressure and velocity updates
(Figure 1). Until the recent work which examined the impact of transverse �ux during a time
step [1], there have been no numerical controls on time step size. Instead time stepping has
been decided by engineering pre-studies or other heuristic approaches. We will review the
treatment of transverse �ux in the next section.
This �ow chart also emphasizes that the streamline simulator is a hybrid. Portions of the

calculation occur on an underlying �xed spatial grid and others occur on the lines. At each
time step of the simulator, a numerical calculation is performed for pressures and phase
velocities. Trajectories are traced along the total �uid velocity (oil+water +gas) to determine
the streamlines. Streamlines are considered to be �xed during a time step. The saturation (or
composition) evolution takes several steps. Saturations are sampled onto the streamlines, they
are then transported along streamlines using appropriate one-dimensional numerical techniques,
and they are then re-sampled or averaged onto the grid. The result is a non-conservative
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Figure 1. Streamline simulation IMPES formulation.

scheme; re-sampling of saturation introduces mass balance errors. When handled badly, these
have been reported to be as large as 30% [13].
Streamline-based computation has made it extremely easy to represent longitudinal transport.

It is less obvious how to represent gravity segregation, capillarity and di�usion, and unsteady
state velocity e�ects, all of which act transverse to the streamlines. Transverse mechanisms
are resolved using operator splitting techniques. In this diagram of the simulator, the operator
splitting occurs at the end of the time step. However, if necessary, the streamline time step may
be split into several subsidiary time steps, depending upon the requirements of the transverse
mechanisms. We will examine this in more detail in our discussion of operator splitting.
It is interesting to compare the treatment of these transverse mechanisms in streamtube

simulation, as compared to streamline simulation. One may consider the streamtubes as de�n-
ing curvilinear control volumes for a numerical grid. On this grid, we may use any of our
numerical techniques to represent either longitudinal or transverse �ux. Although the longi-
tudinal �ux is, by construction, the larger, the transverse �ux is not neglected. In contrast,
the lack of explicit volume elements for streamline simulation makes the representation of
transverse mechanisms on the streamlines problematic. When we review the streamline for-
mulation we will introduce co-ordinates along and transverse to the streamlines. Longitudinal
processes will be easy to represent. More subtle is the issue of transverse �ux. The streamline
formulation makes it extremely easy to generate �nite di�erence equations for transport along
streamlines, but the transverse �ux is di�cult to represent. This can be seen in Figure 2,
where three convecting points that are immediately adjacent across three streamlines diverge
in space after passing a stagnation point.
With � representing a co-ordinate along the streamline, and  a transverse co-ordinate, we

see that the longitudinal spatial derivative (@=@�) along each streamline is well de�ned, while
the transverse derivative, (@=@ )�, is singular. Although the transformation from (x; y; z) to
longitudinal and transverse co-ordinates will have other advantages in our formulation and
numerical methods, they do not provide an e�ective three-dimensional co-ordinate system.
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Figure 2. Flow past a stagnation point.

Let us now summarize the attributes of a three-dimensional streamline simulator.

• Streamlines are calculated in three dimensions.
◦ Pressures and velocities are obtained from the numerical solution of the pressure
equation. As a result they are as �exible in the treatment of spatial heterogeneity and
source and sink terms as a conventional �nite di�erence calculation.

◦ The streamlines are traced following the total velocity. Transverse phase �ux, e.g.,
gravity segregation or capillary driven �ow must be modelled separately. The stream-
lines themselves are traced across cells using the Pollock [14] algorithm, as gener-
alized by King and Datta-Gupta [9, 15] for corner-point cells and for faulted grids.
Streamlines across unstructured grids have also been studied [16, 17].

◦ One-dimensional numerical techniques are used to solve for transport along each
streamline. Both Eulerian and Lagrangian techniques have been used for black oil.
Eulerian methods are used for compositional simulation.

• Pressures and velocities are updated during the calculation
◦ Calculations utilize the underlying spatial grid.
◦ Studies are not restricted to steady state results, but are instead large time step IMPES
calculations.

◦ At each time step, saturations are re-sampled introducing potential mass balance errors,
and to some extent, re-introducing numerical dispersion.

• Operator Splitting is used to combine mechanisms
◦ Gravity and compressibility are included routinely in the existing commercial stream-
line codes.

◦ Capillarity has been included within research codes, but it is not yet in production
mode in the commercial simulators.

◦ Transverse �ux will be managed using this same operator splitting formulation.
◦ A CFL construction should be performed to control time stepping for the operator
splitting step, as will be discussed in this paper.

• Appropriate allocation of �ux to lines
◦ The mapping of saturations from lines to cells requires that the volume elements
associated with streamlines are calculated appropriately. This is intimately related to
�ux, and the co-ordinate transformation which underlies the streamline formulation,
as will be discussed in the next section.
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• Streamline simulation is not : : :
◦ Streamtube simulation. Streamtubes require the construction of explicit volume ele-
ments. The velocity of �uid down a streamtube is given by the volumetric �ux per
unit area. In contrast, for streamlines, the velocity is calculated numerically and the
area is obtained implicitly, as the volumetric �ux per unit velocity.

◦ Front tracking simulation. There are no moving elements corresponding to fronts or to
saturation contours. Instead, saturations are interpolated between streamlines in three
dimensions at the end of each time step. The resulting saturations may not be mass
conserving, and may also have re-introduced numerical dispersion.

◦ Restricted to steady state or incompressible �ow. However, the usual derivation of the
time of �ight formulation for streamline simulation is for steady state incompressible
�ow, which may confuse the unwary reader.

2. STREAMLINE TIME OF FLIGHT FORMULATION

The time of �ight formulation [6, 9] is not strictly necessary to construct a streamline simulator.
However, it does provide a formal derivation for the approaches used. Especially as these
become more problematic, e.g., for compressible �uids, for unsteady state e�ects, and for
multi-component problems, this formulation guides us to an appropriate implementation.
Let us examine the simplest �ow equations that demonstrate the time of �ight formulation—

that of two phase incompressible steady state Darcy �ow in a porous media. The equations
for water�ood are the saturation evolution equation and the equation for incompressible �ow.
The latter follows from the mass (or volume) conservation of water plus oil.

�
@Sw
@t

+∇ · (uFw)=0 (1)

∇ · u=0 (2)

The total �uid Darcy velocity is aligned with the local pressure gradient.

u= − �t∇P (3)

The coe�cient between u and ∇P is the total mobility, which depends upon the permeability
of the medium, and the relative permeabilities and viscosities of the �uid phases.

�t = k·
(
krw
�w

+
kro
�o

)
(4)

The fractional �ow of water is equal to the ratio of water phase and total mobilities.

Fw =
�w
�t
=

(
krw
�w

)/(
krw
�w

+
kro
�o

)
(5)

The permeability depends upon position, k(x), whilst the relative permeabilities depend upon
the phase saturation and also the rock type.
In the examples to be shown, we will use quadratic relative permeabilities for each phase.

The mobility ratio, M , is de�ned as the ratio of the mobility of water at the residual oil
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saturation to the mobility of oil at the irreducible water saturation. For simplicity of exposition,
the endpoint saturations will be scaled to [0,1], e.g. Sorw =0, Swirr = 0.

kro =
(
1− Sorw − Sw
1− Sorw − Swirr

)2
= (1− Sw)

2

krw = M
�w
�o

(
Sw − Swirr

1− Sorw − Swirr

)2
=M

�w
�o

S2w

(6)

The one-dimensional Buckley–Leverett solution consists of a frontal shock at saturation
S∗
w =1=

√
M + 1 and a rarefaction from that saturation to the injection saturation, Sw =1.

The mobility contrast at the front is given by M ∗=2(1 − 1=
√
M + 1). Once capillarity is

introduced we will use the usual J-function scaling for the capillary pressure function. A
logarithmic function of saturation will be used for the J-function itself.

Po − Pw =Pc(x; Sw) = �

√
�
k
J (Sw)

J (Sw) ∼ − ln
(

Sw − Swirr
1− Sorw − Swirr

)
= − ln(Sw)

(7)

This function has the appropriate scaling at the irreducible water saturation: Pc→ + ∞ as
krw→0, and has vanishing entry pressure at the residual oil saturation: Pc = 0 at Sw =1.
These equations are su�ciently rich to introduce the time of �ight formulation. Consider an

incompressible, steady state velocity �eld, u(x). Based upon this velocity, we will introduce
three new co-ordinates, and transform the conservation equation accordingly. Two of the new
co-ordinates are the bi-streamfunctions [18]. Because the �ow is incompressible, it can be
represented as the cross-product of these functions.

u=∇ × ∇� (8)

For instance, for two-dimensional incompressible �ow, �= z and  =  (x; y) is the usual
streamfunction. The third co-ordinate is the time of �ight, �(x), de�ned by integrating the
transit time of a test particle moving at the interstitial velocity u=� backwards from x along
its streamline (in three dimensions) to either an injection well or to a boundary.

�=
∫
 

�
u
ds (9)

In di�erential form

u · ∇�=� (10)

The time of �ight has units of time, but in fact it functions as a distance, which increases along
a streamline. The bi-streamfunctions function as transverse co-ordinates. Figure 3 shows two
di�erent permeability �elds and the resulting streamline patterns for �ow from left to right
in the rectangular domain. With small heterogeneity (low correlation or low variance) the
time of �ight and bi-streamfunction co-ordinates are essentially (x; y; z). As the permeability
correlation increases, the time of �ight and bi-streamfunction co-ordinates depart signi�cantly
from this simple rescaling of co-ordinates. Although this conceptualization invokes a single
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Figure 3. Permeability and streamlines (low and high permeability heterogeneity).

velocity �eld and particles, the time of �ight formulation is not a particle tracker, nor is it
restricted to single-phase �ow.
The representation of Equation (1) requires the evaluation of the gradient operator.

∇=(∇�)
@
@�
+ (∇ )

@
@ 
+ (∇�)

@
@�

(11)

Or simply

u · ∇=�
@
@�

(12)

The di�erential equation is now apparently one-dimensional.

@Sw
@t

+
@Fw
@�

=0 (13)

As already discussed, this transport equation may be solved numerically along each streamline.
Or, if analytic techniques are used, then even more rapid fast performance estimations or up-
scaling calculations may be performed, including the e�ects of an arbitrary three-dimensional
heterogeneity �eld. The volume element also takes a simple form under this transformation:∣∣∣∣

∣∣∣∣@(�;  ; �)@(x; y; z)

∣∣∣∣
∣∣∣∣ =∇� · ∇ × ∇�=�

� dx dy dz=d� d d�=d� dq (14)

In other words, the di�erential volume d� dq along a streamline is equal to the pore volume
in the original space. There is no requirement that each streamline be generated with identical
�uxes, dq. Correspondingly, this identity is important when re-sampling saturations from lines
to the underlying grid. When incorrectly weighted, you may obtain the large mass balance
errors alluded to earlier.
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The time of �ight derivations can be extended to compressible �ows. In this case, the re-
striction on velocity, Equations (2) and (8), and the Jacobian of the volumetric transformation,
Equation (14) will each be generalized. However, the primary de�nition of the time of �ight,
Equations (9) and (10), remain unchanged. To focus our attention on numerical stability, we
will not include the physical mechanisms of compressibility in the current study.
This completes the presentation of the time of �ight formulation for streamlines. A velocity

�eld is used to generate a co-ordinate transformation in which the transport equation and the
di�erential volume elements are simple to evaluate. Fortunately, the transverse co-ordinates
 and � do not enter into the resulting equations, as they are di�cult to calculate. Only the
time of �ight co-ordinate � and the volumetric �ux dq enter into the equations, and both are
easy to evaluate.

3. TRANSVERSE FLUX AND UNSTEADY STATE EFFECTS

The elegance of the streamline time of �ight formulation is apparent in Equation (13). When
we implement the numerical solution along streamlines for Equation (10), we have done so as
a sequence of steady state approximations, just as we do in an IMPES formulation in a �nite
di�erence simulator. Unfortunately, unlike a traditional IMPES solution, the time step is now
much larger, and the approximation that the total �uid velocity may be treated as constant
during a time step cannot be as accurate. To understand the nature of this approximation, we
now distinguish between the initial velocity, u0, and the instantaneous velocity, u, during a
time step. We de�ne the time of �ight co-ordinates, (�;  ; �) using the initial velocity of the
time step.

u0 · ∇�=� (15)

The spatial derivative can now be written as its initial approximation, and a correction.

u · ∇Fw = u0 · ∇Fw + (u − u0) · ∇Fw

= �
@Fw
@�

+ (u − u0) · ∇Fw
(16)

The second term in Equation (16) represents the transverse �ux because of changes in in-
stantaneous velocity. As in much of the streamline literature, these equations are solved using
operator splitting. A time step consists of a longitudinal convective step, followed by the
transverse �ux step: @Sw=@t→@Sw=@t1 + @Sw=@t2. Equation (1) now becomes

�
@Sw
@t1

+ �
@Sw
@t2

+ �
@Fw
@�

+ (u − u0) · ∇Fw =0 (17)

which may be grouped and split into the following two equations.

@Sw
@t1

+
@Fw
@�

=0 (18)

�
@Sw
@t2

+ (u − u0) · ∇Fw =0 (19)
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To within the operator splitting approximation, this pair of equations is equivalent to the
original three-dimensional �ow equation. The �rst equation, Equation (18) is identical to the
usual streamline equation, Equation (13). It may be solved using the techniques already in
place within a streamline simulator. The second equation, Equation (19) is identical to our
usual conservation equation, Equation (1), but with the velocity replaced by an unsteady state
velocity. It includes any and all unsteady state e�ects, whether transverse or longitudinal.
It may be solved using any of the techniques applied within conventional �nite di�erence
simulation. These equations combine to provide a ‘predictor–corrector’ formulation. Numerical
predictor–corrector strategies are e�ective if the predictor provides a good �rst approximation,
and if the corrector is relative small. Because of the quality of the streamline approximation,
we will satisfy this requirement. What have we achieved? As an industry, we have a great deal
of expertise in solving each of these equations. Now we recognize that rigorous streamline
simulation relies on solving these two equations in a coupled fashion.
How well does this correction work? We have examined water�ood in a simple geometry—

the quarter �ve spot, with �xed and equal injection and production rates. This is the simplest
possible model that will show the e�ects of viscous cross-�ow. To study the cross-�ow we
vary:

(a) Mobility ratios of M =0:2; 0:5; 0:9; 10:0 (M ∗=0:17; 0:37; 0:55; 1:4).
(b) Time steps of �t=10 days, 20 days, 60 days (0.011, 0.022, 0.066 pore volumes

injected).
(c) Permeability either homogeneous or heterogeneous.

Porosity is constant and not varied. The simulation is done on a 21× 21 cell grid. Varying the
mobility ratio will modify the amount of cross-�ow in the system. Varying the time step size
will change the quality of the piecewise steady state approximation for the �ow �eld—larger
time steps will have fewer velocity re-calculations and larger cross-�ow.
In Figure 4 we show the results of the simulation at 0.4 PVI, for M =0:2, for the three

di�erent time steps. We also show the saturation correction after the �rst time step for the
largest and smallest time step sizes. As expected, the cross-�ow corrections occur at the �ood
front. The sign of the saturation correction corresponds to �ood stabilization: the front slows
down and the pro�le will broaden. For the largest time step, the cross-�ow correction is not
su�cient to reduce the speed of the front. In all cases the cross-�ow correction only has a
local impact on the solution. A �nite di�erence simulation is included as a reference.
The solution is displayed as a function of time in Figure 5, where we plot water-cut. In

this case we report the results for the extremes of mobility ratio and for the minimum and
maximum time step size. We also include the results with and without the cross-�ow correc-
tion. Again, a �nite di�erence simulation is included as a reference. In Figure 5 we see two
e�ects. First, the saturation corrections are negligible in terms of the water-cut development—
the saturation cross-�ow does not change the large scale behaviour of the solution. More
importantly, however, are the oscillations which have become apparent in the solutions as the
amount of cross-�ow increases. For the highest mobility ratio, small oscillations in the pro�le
are only seen at the largest time step. For the lowest mobility ratio, oscillations are much
more apparent, and occur at both the 20 day and the 60 day time steps.
All the cases simulated are summarized in Table I. The values in the table are the maximum

saturation correction at the �rst time step. The cells in the table are colour coded according to
the stability of the solution. If any oscillations are seen in the water-cut curve, then the cells
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Figure 4. (a) Saturations at 0.4 PVI for �t=10 days, 20 days, 60 days and ECLIPSE. (b) Saturation
corrections after one time step for �t=10 days and 60 days.

are shaded. There is no obvious correlation between the limit of stability and the magnitude
of the saturation correction.

4. TIME STEP CONTROL VIA A TRANSVERSE CFL CONSTRUCTION

What is missing from the above analysis? What can provide us with guidance on the nature
of the oscillations seen in the water-cut development? We know that the instability becomes
more apparent as the cross-�ow, (u − u0) increases, and also as the time step size increases.
For a one-dimensional Buckley–Leverett water�ood solution, stability of an IMPES numerical
scheme is governed by the CFL number [19].

CFL=
u
�
�t
�x

F ′
w (20)

The limit of stability, CFL=1, determines the maximum stable time step size. At this time
step, the wave with maximum speed will cross one cell (�x). A corresponding construction
for the CFL number in three dimensions is known [20]. Working with cell volumes and
volumetric �ux instead of distances and velocities, we can construct the following discrete
CFL number,

CFL=
�t
PV

∑
In�ow Faces

(
uf · nf · Max

Swf

(
[Fw]
[Sw]

))
(21)
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Figure 5. Water-cut for the homogeneous quarter �ve spot (a) M =0:2; and (b) M =10:0.

The summation is only taken over the in�ow faces, e.g. nf is inwardly directed cell face area,
and uf · nf must be positive. This is consistent with the interpretation of the CFL number as
being dependent upon the fastest wave which moves across a cell.
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Table I. Maximum saturation correction for all cases. Shaded cells show
oscillatory water-cut development.

Time step (days)

�SwMax 10 20 60

Homogeneous M =0:2 0.0598 0.0419 0.1017
M =0:5 0.022 0.0894 0.0838
M =0:9 0.0147 0.0395 0.0765
M =10 0.0231 0.0209 0.0612

Heterogeneous M =0:2 0.0472 0.0914 0.1183
M =0:5 0.0742 0.0757 0.0949
M =0:9 0.0352 0.0309 0.0840
M =10 0.0260 0.0372 0.0564

The only subtlety in this equation is in the discrete form of the wave speed. We can
think of the saturation of the adjacent cell, Sw;Face, �ooding into the cell, Sw;Cell, which will
form a Buckley–Leverett pro�le. Whether we have a pure rarefaction, a shock, or a contact
discontinuity depends upon the speci�c saturations and the fractional �ow function. The wave
speed that contributes to the CFL restriction is the fastest wave. Speci�cally, if we consider
all saturations Sw intermediate between Sw;Face and Sw;Cell, then the speed is the maximum of
(Fw(Sw)− Fw(Sw;Cell))=(Sw − Sw;Cell). If there is no saturation contrast across a face, then this
wave speed is set to zero, as there is no contribution to the evolution equation. This form of
the discrete CFL number fully accounts for both saturation discontinuities and �ow direction
reversals. It will also account for the more general form of the fractional �ow function that
includes the e�ects of gravity.
Equation (21) is the CFL construction for the Buckley–Leverett equation in three dimen-

sions, Equation (1). There is no obvious time step limitation in Equation (18). This leaves only
Equation (19), which is of the same form as Equation (1) but with the transverse velocity,
u − u0 instead of u.

�CFL=
�t
PV

∑
In�ow Faces

(
(uf − u0) · nf · Max

Swf

(
[Fw]
[Sw]

))
(22)

We use the symbol �CFL to distinguish from the CFL for Equation (1). We repeat the data
presentation of Table II, but now we calculate the maximum �CFL instead of the maximum
saturation change. The limit of stability is clearly equal to �CFL=1. At this time step size,
the transverse �ux is su�cient to shift a streamline laterally by one cell. Beyond this time step,
the streamlines are su�ciently out of alignment with the saturations, that we no longer have
monotonic saturation pro�les along individual streamlines. This is shown clearly in Figure 6
which shows a detailed view near the outlet of the system for M = 0:2, 60 day time steps,
at 0.4 PVI.
We contrast the CFL number of the original equation and the correction CFL in

Figure 7. We see approximately a ten-fold reduction in the e�ective CFL number by us-
ing the streamline predictor step as a pre-conditioner. This is very reasonable for a problem
with strong cross-�ow. For less severe cross-�ow, the value of u−u0 can become quite small,
giving even greater bene�ts for streamline simulation. These trends are completely consistent
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Table II. Maximum correction CFL for all cases. Shaded cells show
oscillatory water-cut development.

Time step (days)

Correction CFL 10 20 60

Homogeneous M =0:2 0.513 1.218 2.343
M =0:5 0.567 0.716 1.385
M =0:9 0.298 0.468 1.47
M =10 0.488 0.649 2.306

Heterogeneous M =0:2 1.166 1.73 3.755
M =0:5 0.884 1.362 2.679
M =0:9 0.689 1.006 1.794
M =10 0.705 0.954 1.59

Figure 6. Streamlines and saturations for M =0:2, 0.4 PVI, 60 day time steps, heterogeneous permea-
bility. The image has been zoomed in to the vicinity of the outlet.

with the industry’s empirical experience with streamline time step control. For the �rst time,
we now have the ability to predict the maximum allowable time step size for a streamline
simulation. It is interesting to note that this limit occurs irrespective of the means used to
solve the saturation correction equation. Even if a fully implicit technique was used to solve
Equation (19), the streamline predictor construction is essentially IMPES.
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Figure 7. CFL and correction CFL after the �rst time step for M =0:2, homogeneous permeability.

5. TREATMENT OF GRAVITY AND CAPILLARITY

What about other physical e�ects? We now extend the discussion to cover the e�ects of
gravity and of capillarity [21–25]. The water phase velocity uFw is replaced by a more
complete expression.

uw =
�w
�t
u+

�w�o
�t

∇(Pc −��gz) (23)

The total velocity is also modi�ed.

u= − �t∇(Pw + �wgz)− �o∇(Pc −��gz) (24)

We can de�ne the fractional �ow of water, fw, (for non-zero total velocity) by projecting the
water �ux in the direction of the total velocity.

u2fw ≡ u · uw = �w
�t

u2 +
�w�o
�t

u · ∇(Pc −��gz) (25)

Here ��=�w − �o is the density di�erence between the phases, and the capillary pressure
was de�ned earlier, Equation (7). For the one-dimensional example calculations, we will
use quadratic relative permeabilities and logarithmic capillary pressure. The fractional �ow
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function can then be written as

fw = Fw(Sw)− �G(Sw)− 	H (Sw)
@Sw
@x

G(Sw) =
MS2w(1− Sw)2

MS2w + (1− Sw)2
(26)

H (Sw) =
MSw(1− Sw)2

MS2w + (1− Sw)2

The examples will use M =3, �=20, and 	=0:1.
Let us �rst consider the e�ects of gravity. It has been widely implemented using operator

splitting within various streamline simulators. We will see that its implementation raises no
particular issues. We split the time step into a convective time step and a gravity time step.
First we have a ‘predictor’ convective step and use fw =Fw(Sw). In the gravity ‘corrector’
step, fw = − �G(Sw). This is no longer a transverse �ux correction—it is a representation of
the vertical segregation of �uids due to gravity. We solve the gravity step with an explicit
numerical scheme, and try three di�erent time step sizes, Figure 8. This equation has its own
CFL construction, which follows from Equation (21). If we use an explicit solution for the
gravity, and if we exceed the limit of CFL=1, then the solution is unstable. In this particular
instance, we can either cut the time step to satisfy CFL¡1 or we can choose to use an
implicit technique. The �nite di�erence solution is included for reference, and we see that the
gravity operator splitting has worked perfectly.
Let us now look at the e�ects of capillarity. Figure 9 shows the fractional �ow curve with

its concave envelope. In the absence of capillarity, the analytic solution satis�es an entropy
condition and follows the concave envelope. A singular perturbation analysis can be used
to demonstrate that the e�ect of capillarity on the fractional �ow is identical—again, the
solution follows the concave envelope [21]. The e�ect of capillarity on the saturation pro�le
is that the saturation shock spreads to a �nite width which depends upon the strength of
capillarity relative to the viscous pressure drop. But otherwise, the solution with capillarity is
very similar to the solution without capillarity. Figure 9(a) replicates the solution in Figure 8
without gravity, to within the e�ects of numerical dispersion. Similarly, Figure 9(b) replicates
the full �nite di�erence solution.
What happens when we split capillarity from the fractional �ow in the natural way:

fw =Fw(Sw) followed by fw = − 	H (Sw)@Sw=@x? The results are shown in Figure 10. Un-
like the case of gravity, the operator split solution does not converge to the �nite di�er-
ence solution—it is too di�usive. This e�ect has been described before, e.g. References
[22–24]. The residual between the concave envelope and the fractional �ow acts as an anti-
di�usive term which must be included in the operator splitting: fw = F̃w(Sw) and fw =Fw(Sw)−
F̃w(Sw)− 	H (Sw)@Sw=@x. Figure 10(b) shows that this split successfully converges. The only
solution which does not require this correction to the operator splitting is obtained if the
original convective step is reduced to very small time steps [22, 25]. Of course, this defeats
the intent of streamline simulation.
The capillary equation is now a non-linear di�usion problem. The equivalent of the CFL

number and the limit CFL=1 is the di�usion number, DN= − 	H (Sw)�t=�x2 and the limit
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Time = 0.2 PVI
Gravity by Operator Spilt 
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Figure 8. Saturation pro�le with gravity. (a) No gravity; (b) gravity, CFL=1:1; (c) gravity, CFL=0:33;
(d) gravity, CFL=0:9; and (e) �nite di�erence.

DN = 1
2 for an IMPES calculation. Again, this is probably best solved using an implicit

technique. Figures 10(a) and (b) both show very strong instabilities once this stability limit
is exceeded.
Although this anti-di�usive correction appears to provide a successful treatment of

capillarity, consider how it needs to be applied in practice in three dimensions. The shape of
the fractional �ow curve will vary tremendously throughout the model as velocities and dips
vary. Examine the di�erence between Figure 9(a) and (b); you obtain completely di�erent con-
cave envelopes and residual corrections. As discussed in Reference [22], failure to get an ac-
curate residual will generate spurious results. A simpler treatment is to split the water �ux into
its longitudinal and transverse components. The longitudinal �ux was de�ned in Equation (25)

uw = ufw; fw ≡ u · uw
u2

=
�w
�t
+ �

�w�o
u2�t

@
@�
(Pc −��gz)

The remaining transverse �ux is obtained from the orthogonal projection operator (
↔
1 −uu=u2) ·

uw = �w�o=�t(
↔
1 −uu=u2) · ∇(Pc−��gz). This reduces to the un-split solution in one dimension,

and no longer has need of a concave envelope construction for the second equation. It should
be noted that in the recent work of Berenblyum et al. [25], that transverse capillary �ux is
very strong, and we will obtain essentially the same results. However, in the longitudinal
direction we do not require the anti-di�usive corrections utilized in References [22–24].
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Figure 9. Fractional �ow construction. (a) No gravity; and (b) with gravity.
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Time = 0.2 PVI
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Figure 10. Saturation pro�le with capillarity. (a) Without concave envelope correction; and (b) with
concave envelope correction. Each plot has �ve curves: (1) No capillarity, (2) capillarity, DN=0:52,

(3) capillarity, DN=0:18, (4) capillarity, DN=0:46, (5) �nite di�erence.
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6. CONCLUDING DISCUSSION

There is one theme in this discussion: the stability of streamline simulation can be assessed by
the same techniques that have been applied to conventional �nite di�erence calculations. This
provides a level of rigor that has been un-recognized to date. The transverse �ux corrections
allow us to understand the impact of unsteady state velocity. The operator split treatment for
gravity seems to hold no issues. However, capillarity needs to be managed with some care.
A speci�c split construction for capillarity, which will side-step the known issues, has been
proposed.
Numerical stability is necessary, but not su�cient, for a numerical method. The current

work provides a theoretical and practical solution to the question of stability. The study of
convergence, and accuracy of the solution remains open questions for streamline simulation.
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